Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Polymeric μ-bromo- μ-pyridine-3-carboxylato- $\kappa^{3} O, O^{\prime}: N$-mercury (II)

Zora Popović, ${ }^{\text {a* }}$ Gordana Pavlović, ${ }^{\text {b }}$ Dubravka MatkovićČalogović ${ }^{\text {a }}$ and Željka Soldin ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Laboratory of General and Inorganic Chemistry, Faculty of Science, University of Zagreb, Zvonimirova 8, HR-10000 Zagreb, Croatia, and
${ }^{\mathbf{b}}$ Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
Correspondence e-mail: zpopovic@chem.pmf.hr

Received 3 February 2003
Accepted 11 March 2003
Online 10 April 2003
The asymmetric unit of the title polymeric complex, $[\mathrm{HgBr}-$ $\left.\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)\right]_{n}$ or $\mathrm{HgBr}($ nic $)$, contains mercury coordinated via two Br atoms $[\mathrm{Hg}-\mathrm{Br}=2.6528$ (9) and 2.6468 (9) \AA], two carboxylate O atoms, which form a characteristic fourmembered chelate ring $[\mathrm{Hg}-\mathrm{O}=2.353$ (6) and 2.478 (7) \AA], and an N atom $[\mathrm{Hg}-\mathrm{N}=2.265$ (5) \AA], in the form of a very irregular (3+2)-coordination polyhedron. The pronounced irregularity of the effective $\mathrm{Hg}(3+2)$-coordination is a result of the rigid stereochemistry of the nicotinate ligand. According to the covalent and van der Waals radii criteria, the strongest bonds are $\mathrm{Hg}-\mathrm{Br}$ and $\mathrm{Hg}-\mathrm{N}$. These covalent interactions form a two-dimensional polymer. The puckered planes are connected by van der Waals interactions, and there are only two intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds [3.428 (10) and 3.170 (10) Å].

Comment

Recently, we began an investigatoin of mercury(II) coordination chemistry with ligands containing N - and O -donor atoms, such as mono- and disubstituted pyridinecarboxylic acids, which form polymeric complexes of the $\operatorname{Hg} X(L)$ and $\operatorname{Hg} X(L)(L H)$ types, where L is deprotonated pyridinecarboxylic acid and $L H$ is neutral pyridinecarboxylic acid (Popović et al., 1999; Matković-Čalogović et al., 2001, 2002).

(I)

Interestingly, in all of these complexes, replacement of one halide atom occurred. Moreover, different coordination modes of mercury are observed, i.e. with COOH or COO^{-}

Figure 1
The structure of $\mathrm{HgBr}(\mathrm{nic})$ with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
groups as well as the pyridine N -donor atom. The COOH and COO^{-}groups can act as monodentate, chelating and/or bridging groups, while the pyridine N -donor atom acts in a monodentate manner. The tendency of the Hg atom to achieve effective coordination (Grdenić, 1981), which includes covalent bonds and van der Waals interactions (Pauling, 1960; Bondi, 1964; Grdenić, 1965; Nyburg \& Faerman, 1985; Matković-Čalogović, 1994), along with the spatial arrangement of the donor atoms (i.e. the type of pyridinecarboxylic acid used), leads to various, mostly irregular, coordination polyhedra of mercury.

No structural data on mercury(II) complexes with nicotinic acid or the nicotinate ion are reported in the Cambridge Structural Database (CSD; Version 5.24 of November 2002; Allen, 2002). NicH (pyridine-3-carboxylic acid or nicotinic acid) and nic ${ }^{-}$(the nicotinate ion) exhibit various coordination modes in metal complexes. Polymerization can occur by the formation of covalent bonds or via extensive hydrogenbond networks. catena-[Bis $\left[\right.$ trans-bis (μ_{2}-thiocyanato)bis(nicotinic acid)cadmium(II)] bis(nicotinic acid) clatrate] is the only known complex of the group 12 metals with nicH as a ligand (Yang et al., 2001). NicH is coordinated by the Cd atom through the pyridine N atom, while the COOH group does not take part in coordination. There are a few other examples of nicH complexes of Cu (Goher \& Mak, 1987; Aakeröy et al., 2000; Naumov et al., 2001) or Pd (Qin et al., 1999) in which

Figure 2
PLATON (Spek, 1998) view of the crystal structure of (I).
coordination also occurs via the N atom. The only complex that has a different coordination mode of nicH, through the keto O atom of the carboxyl group, is the trinuclear Cr complex, where the structure was solved from powder X-ray data (Mullica et al., 1986).

In the case of the deprotonated nic ${ }^{-}$ligand, coordination can be achieved via the pyridine N atom, as in the structures of trans-tetraaquabis(pyridine-3-carboxylate- N)chromium(II) (Cooper et al., 1984; Broderick et al., 1986; Marsh \& Spek, 2001), trans-tetraaquabis(nicotinate- N)zinc(II) (Broderick et al., 1986), trans-tetraaquabis(pyridine-3-carboxylate- N)nickel(II) (Batten \& Harris, 2001) and trans-tetraaquabis-(pyridine-3-carboxylate- N)copper(II) (Kenar et al., 1999). On the other hand, the nicotinate ion can act in a bidentate manner through carboxylate O, O^{\prime}-donor atoms, as in the structure of trans-dichlorobis(N-methylpyridinium-3-carboxylato)copper(II) (Nakagawa et al., 1999), or through an N, O-donor set, as in the structure of the polymeric catena[ammonium bis(pyridine-3-carboxylato- O, N, N^{\prime}) silver(I)] complex (Smith et al., 1994).

In the title polymeric complex, HgBr (nic), (I), the irregular five-coordination of mercury is strongly dictated by the rigid geometry of the nic ${ }^{-}$ligand (Fig. 1). The Hg atom is surrounded by two carboxylic acid O atoms from the deprotonated nic ${ }^{-}$ligand, in the form of a characteristic fourmembered chelate ring [where the $\mathrm{Hg}-\mathrm{O}$ bonds (Table 1) are longer than the tetrahedral $\mathrm{Hg}-\mathrm{O}$ covalent bond of $2.14 \AA$; Grdenić, 1965; Pauling, 1960], two symmetry-related bridging Br atoms [where the $\mathrm{Hg}-\mathrm{Br}$ bonds (Table 1) are slightly longer than the tetrahedral $\mathrm{Hg}-\mathrm{Br}$ covalent bond of $2.62 \AA$; Grdenić, 1965; Pauling, 1960] and the pyridine N atom [where the $\mathrm{Hg}-\mathrm{N}^{\mathrm{i}}$ bond (see Table 1 for symmetry code) is slightly longer than the tetrahedral $\mathrm{Hg}-\mathrm{N}$ covalent bond of $2.23 \AA$; Grdenić, 1965; Pauling, 1960]. Bond angles range from 53.7 (2) ${ }^{\circ}$ for $\mathrm{O} 1-\mathrm{Hg}-\mathrm{O} 2$ to $140.9(2)^{\circ}$ for $\mathrm{O} 1-\mathrm{Hg}-\mathrm{N}^{\mathrm{i}}$. The largest bond-angle value corresponds to the stronger $\mathrm{Hg}-\mathrm{O}$ bond $(\mathrm{Hg}-\mathrm{O} 1)$, but the $\mathrm{O} 1-\mathrm{Hg}-\mathrm{N}^{i}$ bond-angle value is a result of the constraints of ligand geometry rather than an indication of a strong $\mathrm{Hg}-\mathrm{O}$ bond. It is obvious that the strongest bonds are to the N and Br atoms, although the bondangle values exhibit significant irregularity (compare $\mathrm{Br}-$ $\mathrm{Hg}-\mathrm{N}^{\mathrm{i}}, \mathrm{Br}{ }^{\mathrm{ii}}-\mathrm{Hg}-\mathrm{N}^{\mathrm{i}}$ and $\mathrm{Br}-\mathrm{Hg}-\mathrm{Br}^{\mathrm{ii}}$ in Table 1) and therefore lead to a deformed (3+2)-coordination for mercury. The geometry of the nic ${ }^{-}$ion is normal (Allen et al., 1987). The crystal structure of nicH is known [CSD refcodes NICOAC (Wright \& King, 1953), NICOAC01 (Gupta \& Kumar, 1975) and NICOAC02 (Kutoglu \& Scheringer, 1983)]. The molecules of nicH are linked through $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ intermolecular hydrogen bonds parallel to the b axis. The endocyclic $\mathrm{C}-\mathrm{N}$ bonds within the pyridine ring in (I) are comparable to those in the structure of nicotinic acid itself $[\mathrm{N}-\mathrm{C} 3$ and $\mathrm{N}-\mathrm{C} 4$ of 1.334 (8) and 1.343 (9) A., respectively, in (I) versus $\mathrm{N}-\mathrm{C} 1$ and $\mathrm{N}-\mathrm{C} 5$ of 1.348 (4) and 1.342 (4) \AA in the acid; Kutoglu \& Scheringer, 1983]. The deprotonation of the carboxyl group implies changes in the $\mathrm{C}-\mathrm{O}$ bond lengths, which are 1.226 (11) and 1.259 (10) \AA for bonds $\mathrm{O} 1-\mathrm{C} 1$ and $\mathrm{O} 2-\mathrm{C} 1$, respectively, in (I) compared with $\mathrm{O} 1-\mathrm{C} 6$ and $\mathrm{O} 2-\mathrm{C} 6$ of
1.308 (4) and 1.211 (4) \AA in nicH (Kutoglu \& Scheringer, 1983). The two-dimensional polymeric structure of (I) is formed by the covalent interactions of Br^{-}and nic ${ }^{-}$ions with Hg atoms. The planes are connected by van der Waals contacts of the pyridine rings, and there are only two weak intermolecular hydrogen bonds of the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ type (Fig. 2 and Table 2).

Experimental

An aqueous solution of $\mathrm{HgBr}_{2}(0.3 \mathrm{~g}, 0.83 \mathrm{mmol})$ and nicH $(0.1 \mathrm{~g}$, 0.82 mmol) was mixed and left to stand for a few days. Colourless crystals (0.17 g , yield 50.73%) precipitated and were filtered off and dried. The compound is soluble in dimethyl sulfoxide, dimethylformamide, γ-picoline and py. Analysis calculated for HgBr (nic): C 17.90, H $1.00, \mathrm{~N} 3.48$, Hg 49.82\%; found: C $18.02, \mathrm{H} 1.21, \mathrm{~N} 3.51, \mathrm{Hg}$ 49.87%. IR spectral data supported the presence of the deprotonated nicotinate ion, which displaced one Br ion from HgBr_{2}. Absorption bands around 2600 and $1900 \mathrm{~cm}^{-1}$, which are typical for intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds of free pyridine acids, were not observed in the IR spectrum of $\mathrm{HgBr}($ nic $)$. A shift of the carbonyl band from $1655 \mathrm{~cm}^{-1}$ in free nicH to $1631 \mathrm{~cm}^{-1}$ in HgBr (nic) was observed. The pyridine-ring N -atom coordination to Hg in the $1600-$ $1400 \mathrm{~cm}^{-1}$ spectrum area is indicated by a splitting of the $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$ vibration bands.

Crystal data

$\left[\mathrm{HgBr}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)\right]$
$M_{r}=402.60$
Monoclinic, C2/c
$a=14.2021$ (12) £
$b=7.2102(16) \AA$
$c=15.368(3) \AA$
$\beta=103.945$ (9) ${ }^{\circ}$
$V=1527.3(5) \AA^{3}$
$Z=8$
$D_{x}=3.502 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 55 reflections
$\theta=10.0-18.0^{\circ}$
$\mu=25.33 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Irregular block, colourless
$0.13 \times 0.09 \times 0.08 \mathrm{~mm}$

Data collection

Philips PW1100 diffractometer,
updated by Stoe
ω scans
Absorption correction: ψ scan
(X-RED; Stoe \& Cie, 1995)
$T_{\min }=0.019, T_{\max }=0.065$
5692 measured reflections
2216 independent reflections
1426 reflections with $I>2 \sigma(I)$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Hg}-\mathrm{N}^{\mathrm{i}}$	$2.265(5)$	$\mathrm{O} 1-\mathrm{C} 1$	$1.226(11)$
$\mathrm{Hg}-\mathrm{O} 1$	$2.353(6)$	$\mathrm{O} 2-\mathrm{C} 1$	$1.259(10)$
$\mathrm{Hg}-\mathrm{O} 2$	$2.478(7)$	$\mathrm{N}-\mathrm{C} 3$	$1.334(8)$
$\mathrm{Hg}-\mathrm{Br}$	$2.6468(9)$	$\mathrm{N}-\mathrm{C} 4$	$1.343(9)$
$\mathrm{Hg}-\mathrm{Br}$	$2.6528(9)$		
$\mathrm{N}^{\mathrm{i}}-\mathrm{Hg}-\mathrm{O} 1$	$140.9(2)$	$\mathrm{O} 2-\mathrm{Hg}-\mathrm{Br}$	
$\mathrm{N}^{\mathrm{i}}-\mathrm{Hg}-\mathrm{O} 2$	$88.6(2)$	$\mathrm{N}^{\mathrm{i}}-\mathrm{Hg}-\mathrm{Br}$	$106.69(15)$
$\mathrm{O} 1-\mathrm{Hg}-\mathrm{O} 2$	$53.7(2)$	$\mathrm{O} 1-\mathrm{Hg}-\mathrm{Br}$	$98.65(16)$
$\mathrm{N}^{\mathrm{i}}-\mathrm{Hg}-\mathrm{Br}^{\mathrm{ii}}$	$106.38(15)$	$\mathrm{O} 2-\mathrm{Hg}-\mathrm{Br}$	$95.13(17)$
$\mathrm{O} 1-\mathrm{Hg}-\mathrm{Br}^{\mathrm{ii}}$	$95.30(17)$	$\mathrm{Br}^{\mathrm{ii}}-\mathrm{Hg}-\mathrm{Br}$	$123.15(15)$
		$124.27(2)$	

[^0]Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{iii}}$	0.93	2.60	$3.428(10)$	149
$\mathrm{C}^{\mathrm{i}-\mathrm{H} 4 \cdots \mathrm{O}^{2}}$	0.93	2.47	$3.170(10)$	132

Symmetry codes: (iii) $-x, y, \frac{1}{2}-z$; (iv) $x-\frac{1}{2}, y-\frac{1}{2}, z$.

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.084$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0482 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$S=0.97$
2216 reflections
100 parameters
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.98 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-2.02 \mathrm{e}^{-3}$
H atoms bonded to C atoms were introduced at calculated positions and refined by applying a riding model $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right.$ and $\mathrm{C}-\mathrm{H}=0.93 \AA]$. Because of the irregular shape of the crystal block, the applied absorption correction was semi-empirical (calculated with X-RED; Stoe \& Cie, 1995). Four reflections were used for the φ-scan absorption correction ($\overline{515}, \overline{5} 16, \overline{9}, \overline{1}, 12$ and $9,1, \overline{12}$). The value of μR was taken to be 2.533 .

Data collection: STADI4 (Stoe \& Cie, 1995); cell refinement: STADI4; data reduction: X-RED (Stoe \& Cie, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON98 (Spek, 1998); software used to prepare material for publication: SHELXL97.

This research was supported by the Ministry of Science and Technology of the Republic of Croatia (grant Nos. 0119633 and 0119632).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AV1131). Services for accessing these data are described at the back of the journal.

References

Aakeröy, C. B., Beatty, A. M. \& Lorimer, K. R. (2000). J. Chem. Soc. Dalton Trans. pp. 3869-3872.

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. \& Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Batten, S. R. \& Harris, A. R. (2001). Acta Cryst. E57, m9-m11.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Broderick, W. E., Pressprich, M. R., Geiser, U., Willett, R. D. \& Legg, J. I. (1986). Inorg. Chem. 25, 3372-3377.

Cooper, J. A., Anderson, B. F., Buckley, P. D. \& Blackwell, L. F. (1984). Inorg. Chim. Acta, 91, 1-9.
Goher, M. A. S. \& Mak, T. C. W. (1987). Inorg. Chim. Acta, 127, L13-L16; corrigendum (1988). Inorg. Chim. Acta, 141, 323-323.
Grdenić, D. (1965). Q. Rev. Chem. Soc. 19, 303-329.
Grdenić, D. (1981). Structural Studies of Molecules of Biological Interest, edited by G. Dodson, J. P. Glusker \& D. Sayre, p. 207. Oxford: Clarendon Press.
Gupta, M. P. \& Kumar, P. (1975). Cryst. Struct. Commun. 4, 365-368.
Kenar, A., Arici, C., Atakol, O. \& Ulku, D. (1999). Anal. Sci. 15, 399-402.
Kutoglu, A. \& Scheringer, C. (1983). Acta Cryst. C39, 232-234.
Marsh, R. E. \& Spek, A. L. (2001). Acta Cryst. B57, 800-805.
Matković-Čalogović, D. (1994). PhD thesis, University of Zagreb, Croatia. (Abstract in English.)
Matković-Čalogović, D., Pavlović, G., Popović, Z. \& Soldin, Ž. (2001). 20th European Crystallographic Meeting, Kraków, Poland, Book of Abstracts, p. 116.

Matković-Čalogović, D., Popović, J., Popović, Z., Picek, I. \& Soldin, Ž. (2002). Acta Cryst. C58, m39-m40.
Mullica, D. F., Sappenfield, E. L. \& Bradshaw, J. E. (1986). Powder Diffr. 1, 261-262.
Nakagawa, H., Kani, Y., Tsuchimoto, M., Ohba, S., Hideaki, M. \& Tokii, T. (1999). Acta Cryst. C55, 882-886.

Naumov, P., Jovanovski, G., Drew, M. G. B. \& Ng, S. W. (2001). Inorg. Chim. Acta, 314, 154-162.
Nyburg, S. C. \& Faerman, C. H. (1985). Acta Cryst. B41, 274-279.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca, New York: Cornell University Press.
Popović, Z., Matković-Čalogović, D., Hasić, J. \& Vikić-Topić, D. (1999). Inorg. Chim. Acta, 285, 208-216.
Qin, Z., Jenkins, H. A., Coles, S. J., Muir, K. W. \& Puddephatt, R. J. (1999). Can. J. Chem. 77, 155-157.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Smith, G., Reddy, A. N., Byriel, K. A. \& Kennard, C. H. L. (1994). Polyhedron, 13, 2425-2430.
Spek, A. L. (1998). PLATON98 for Windows. University of Utrecht, The Netherlands.
Stoe \& Cie (1995). STADI4 and X-RED. Stoe \& Cie, Darmstadt, Germany.
Wright, W. B. \& King, G. S. D. (1953). Acta Cryst. 6, 305-317.
Yang, G., Zhu, H.-G., Liang, B.-H. \& Chen, X.-M. (2001). J. Chem. Soc. Dalton Trans. pp. 580-585.

[^0]: Symmetry codes: (i) $\frac{1}{2}+x, \frac{1}{2}+y, z$; (ii) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$.

